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It is demonstrated the local c1 @ nature of weak solutions of elliptic

equations of the type (1.1) in the introduction under the degeneracy (or
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SIGNIFICANCE AND EXPLANATION
The equations treated in the paper represent a gquasilinear generalization
of the elliptic p.d.e. a1§(|vu|P'2vu) =0, p> 1. Such an equation is
degenerate for |[Vul close to zero if p > 2 and is singular for
1< p< 2. It is demonstrated that the weak solutions are continuously
differentiable and the derivatives are HSlder continuous.
These equations arise in the theory of non-Newtonian fluids. In view of

this it is of interest to investigate the local smoothness of the solutions.
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C"’c LOCAL REGULARITY OF WEAK SOLUTIONS "7 DEGENERATE ELLIPTIC EQUATIONS

E. DiBenedetto!!’

1. Introduction

The main result of this paper is the c““ nature of local weak solutions of elliptic

equations of the type

(1.1) -div a(x,u,%u) + b(x,u,%) = 0 in D'(R)

where 1 is an open set in R“, N2> 2 ; is a map from ’R2* into R anda b maps
Rm” into R.

The point here is that we do not assume uniform ellipticity of the leading part of

(1.1), which is allowed to be degenerate for certain values of {Vu|. 1In a precise way we

assume (the summation notation is throughout used)

k 2 2
(A,) 4 b3 YoluDiVaiP 5E1% ey, po>1
3
(A, lak 1<y, k3~ 1200w
*3
[A3] |‘§13:j| < Y1(|“|)'v'~l|p‘1l ked = 1,2,00e,N

(a4l I(x,u, %)) < ¥, (Jul) [Vul® .
The functions Yo( *) and V,(‘) are continuous in R'; Yo(') is decreasing and strictly
positive and Y1(') is increasing.
Thus, the degeneracy of (1.1) is of the same nature as
(1.2) aiv(IVul”Hu) =0 in DU, p> 1,

moreover (1.2) satisfies (A1l-[A3], vp > 1.

“)Deparf_ment of Mathematics, Indiana University, Bloomington, IN 47401.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
Partially supported by National Science Foundation Grants 48~-296-80 NSF-
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The c'+° local regularity of weak solutions of (1.2) for p » 2 has been

investigated by Uhlenbeck [22], Ural'tzeva (23] and Evans [7]. While this paper was in
preparation, Lewis [13] has informed me that he has obtained the same result for the case
1 < p < 2. Lewis proof is quite different with respect to the one we give here.

The fact that (1.2) appears as the Buler equation of the variational integral

F(u) = [ |WulPax, p> 1
2

under certain side conditions, plays one way or another some role in the argquments of
{13,22,23].

Due to the generality we consider, (1.1) need not be the Euler equation of a
variational problem.

The proof reflects the following general idea. Consider a ball B around a point
x; € Q) if the set where (1.1) is degenerate is confined in a small portion of B, then
somehow it can be controlled. If conversely |Vu] is small in a large portion of B,
then it can be compared with the radius of B.

This point of view, originated in 1957 with the work of De Giorgi (5], is now gquite
standard in dealing with degenerate (or singular) equations, and is the one that has been
employed in [2,6,7,23]. The difference is the technical handling which might give richer
or poorer informations on the solution.

Here we propose a substantially different technical version of this fact which permits
a unitary treatment of the cases 1 < p< 2 and p » 2, along with the full quasi~linear
variational structure of (1.1). The proof of the boundedness of |Vu| is based on
controlling the growth of |Vu| in [A,)={A,] with the oscillation of the solution u.

An advantage of our approach is that it does not require a different analysis for
"degenerate” points and "regular" points. The behaviour of the solution around any point

x, e § is analyzed unitarily at once.
By a local weak solution of (1.1) we mean a function u € wl;z(n) such that

(1.3) J {atx,u,%u) *%¢ + bix,u, %)y }dx = 0
a

tor all gy e w""(m; supp v C .

-2=




1 We will assume throughout that u is locally bounded in §. 1If 71(5) < ;1 K =,

¥s € R+, then the local boundedness is implied by Serrin's results [21] if the lower order
' terms |b{x,u,Vu)} < 1|Vu|p—1, and by the arguments'of [12) if |b(x,u,Vu)| < MENRS
0 $p- NN+ p). 4
Let us fix Q' a subdomain of R such that @' C 2 and let M = ess.sup jul. All
our arguments are local in nature and will be carried over ', so that wz might replace
Yotlul) and v (lul) in [Aq]-[ag) with vy, 2 Y, (M), v, = Y, (M).
In order to justify the calculations to follow it is sufficient to have

2
T e L;OC(Q) e 1,9 ™ 1,2,000,8 o

Xy %4
This fact would be implied by the assumptions
(8] b, | < vival® Ibgsby | € I%al®
3
modulo an argument involving ditterence—quotients; modeled on the results of [12] page 270~
. 277. Here we will assume instead that u can be approximated by smooth solutions of
regularized problems. This choice is motivated by simplicity of exposition and by the
possible applications of our results to compactness arguments. Thus we will assume that
[ag) The local weak solution u under consideration, can be locally constructed
as the weak W''P(K) limit of a net {u:} such that
'“e'-,K <M, VvVeE>O0, KCAQ ,
u € cz(ﬂ'), ve > 0 and the v, are solutions (in the classical sense) of
(1.4) -div ;e(x,ue,Vue) + be(x'“e'v“e) =0 in Q.
Here :e’bc are reqularizations of ; and b, such that ;e(x'“e'v“e)’

* 1 1
bc(x'“e'v“c) + a(x,u,Vu), b(x,u,%u) weakly in Lp,(ﬁ'). ; + ;— = 1, whenever

“e'v“s + u,Vu weakly in Lp(ﬂ') and uniformly in K. The regularizations ;t'be are so

constructed as to satisfy




2
€ k

272 2
(a,) %ea b3% Yole + 19 1%] 21615 cemd, p> 1
]
2
2
|A2]e lazux | € 71[c + |Vuc|2] : kK,3 = 1,2,000,N
J
) ad}
[l3le Ia:u.al; | < v,[e + IVue|2] 2, K,J = 1,2,000,N
€ 2.p/2
@, Ibg(x,u ,Pu )| € v le - |Vu ] ) R

Such an approximation assumption is not restrictive in view of the available existence
theory (see [10,12]).

To stress further this point, in Section 2 we will show that if [B] holds, locally
bounded weak solution of (1.1) are locally unique and that in fact can be approximated as
in (Agl.

We can now state our main results.

Theorem 1: Let u € w;;z(ﬁ) n L:°°(a), p> 1 be a local weak solution of (1.1) under the
assumptions [A,]-{Ag]. Then |Vl e L:?C(n) and for every compact K C fI', there exists
a constant C, depending only upon Yo+ YqsPsNM and dist(K,3Q') such that

IVuI.‘K €Cq
Theorem 2: lLet u € Hléz(a) n L:°°(a), P> 1 be a local weak solution of (1.1) under the
assumptions [A,]-[Asl. Then x + Vu(x) is locally HSlder continuous in @', i.e. for
every compact K C Q', there exist constants Cy and ae (0,1), depending only upon

Yo YqsPoN/M and dist(K,3R'), such that

qui(x) - uxi(y)l < c,lx - yla: x,y@K; 4i=1,2,00.,N.

Remark: The theorems still hold if b(x,u,Vu) is not homogeneous with respect to |Vu].
Let us suppose that b(x,u,%u) = hb(x,u,Vu) +y¢ (or |b(x,u,Vu)| € Y,IVqu + V)¢ Then
if v (or ¢ respectively) belongs to L;OC(Q), q > p'N, Theorems 1, 2 remain valid.

We will carry the proofs for the homogeneous case, and then it will be apparent how to

modify the arguments to include the mentioned non-~homogeneous situation.




Corollary: Let u € wl;i(ﬂ). be a local weak solution of
aiv((alP20) =y, p> 15 ge L;°°(a)
q > p'N. Then u € C;::(Q).
Remarkgs: (i) Theorem 2 does not hold for p = ! as shown by the following
counterexample. The function
x, + 1, X, < 0

ulxq,xy) =
2%, + 1, X3 20,

2
2

the gradient is bounded but discontinuous. Geometrically the equation says that the mean

satisfies div(qu|-1Vu) = 0 in the weak sense in the disc D = {xf + x2 < 1}, However,
curvature of each level set of u 1is zero. Existence for div(qul-1Vu) = 0 is related
to functions of least gradient (see [17,20)).

i+a

(ii) The C1°c regularity is the best possible (see [14]). The results of Uhlenbeck [22]

and Ural'tzeva [23] hold also for systems. Because of the generality of (1.1), the c'*“

regularity for systems with the structure [A1]-[A4] is not to be expected. Rven for the
nondegenerate case (p = 2), the best results available are expressed in terms of “partial
regularity® in the sengse of Morrey [(18,8,9]).

An investigation of the partial regularity for systems is of interest; it falls
however, beyond the scope of this work.
(1ii) The equation (1.1) with the degeneracy [A,l-[A,] has geometrical interest for p » 2
(see references in [22]) and arises in the theory of non-Newtonian fluids both for the
case p » 2 (dilatant fluids) and 1 < p < 2 (pseudo plastic fluids) {1,15,16].
(iv) The results of this paper have a parabolic counterpart. The subject will be treated
in a forthcoming paper.

The theorems will be proved in terms of local equiboundedness and equi-HSlder
continuity of the net {Vuc}.

The only estimate which we assume, uniform in € is

J |Vuc|pdx <clk) .
K




The statement that a constant Y depends only upon the data, will mean that Y can be
determined only in terms of YD,Y1,p,N,H and is independent of €., With Y we will
denote a generic positive constant depending only upon the data, which might be different
in different contexts.

The éaper is organized as follows. Section 2 contains some remarks on the
approximation assumption [A5], along with some preliminary material to be used as we
proceed. Section 3 contains the proof of local boundedness of the gradient, whereas in
Section 4 we show the CI:: regulafity for equations with restricted structure

-div a(Vu) =0 ,
where : satisfies [A‘]-[Azl. Finally, in Section 5 we recover the result for the general
.structuze (1.1) by making use of the results of Campanato (3,4].
It is a pleasure to acknowledge conversations with W. Ziemer, during the preparation

of the manuscript.
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2, Remarks on local approximations

The remarks of this section reflect a modification of results and proofs of facts
collected in [12] for the nondegenerate case.

Assumptions [A1]-[A3] imply that in Q°

Y
a(x,u,%u)eVu > = o valf, >

2.1)

Y
LEST ) oL

L d
la(XIu'v‘l)I < P - 1

To prove (2.1) observe that
-
x.

1
[ak(x,u,Vu) - ak(x.u,l.")]\x",k = [f %E ak(x,u,tVu)dt]u
[ k

1 Y

k 0 p

= f a (x,u,tVu)u_u_ dt » —— Yul® .
0 uxj xk xj P 1

For x, € ' we let B(R)  {[x ~ xol < R}, where R is so small that B(R) C @'. Aalso
with KN we denote the measure of the unit sphere in lp, so that meas B(R) = K“R“.

Consider concentric balls B(R), B(R ~ gR), ¢ € (0,1) and construct a smooth cutoff
function x * T(x) such that [ 3 1 on B(R - OR), supp { C B(R), |VC] € (0R)"'. In what
follows x * Z(x), will always denote such a cutoff function. In the weak formulation
(1.3) gelect test functions

¢ =% (u - K)¥explAcu - k)¥c2 .

Routine calculations (see ([21,12]) and a suitable choice of A yield the inequalities
(2.2) 1 - x)*lglam_“) < y(or) Pi(u - k)*|§'3m .
where Y is a constant depending only upon the data.

Inequalities (2.2) hold for every ball B(R) ¢ ', every 0 € (0,1) and every
-M € k € M. By virtue of the results of [12] page 81-90, they imply the local HSlder
continuity of u in Q'. Therefore for every compact K C ' there exist constants C
and B € (0,1) depending only upon the data and dist(K,30') such that
(2.3) lutx) - wiy)) € clx - y1®,  (x,p e K.

If in (2.2) we set O = % and k = g?g) u, in view of (2.3) we deduce that

-




-p+
(2.4) [ (uiPax < yRVP*EP
B(R)

for every ball B(R) c K, and for some constant Y depending only upon the data and
dist(K,3Q').
lLemma 2.1: Let u be a local weak solution of (1.1) with 1 < p € 2. Then there exists a
congtant Y depending only upon the data such that for every function £ € G"P (B(R))
(2.5) [ VulPElax < yvr2 [ (valP"ve ) Zax .

B(R) B(R)
Proof: The lemma follows from (2.4) via Lemma 1.3 and Lemma 1.4 of [12] page 59-61.
lLesma 2.2: Let u be a local weak solution of (1.1) with p ? 2. Then there exists a
constant Y depending only upon the data such that, ¥§ € ‘ov"p(B(R))
(2.6) [ uPelax < v [ (valP v %ax ,

B(R) B(R)

. [

provided that R < Yo/ ¢
Proof: In the weak formulation (2.3) set ¥ = [u ~ u(xo)]E2 where x, is an arbitrary

point of B(R). Using (2.1) we obtain

Yol  WulPElax<y, [ 1valP oo - uix)) %19 ax +
B(R) B(R)
+v,J 1VulPlux - u(xo)lﬁzdx .
B(R)

The lemma follows from an application of Cauchy inequality ab < £a2 + e"bz.

Lemma 2.3 (local unigqueness): Let uy,u, be any two local weak solutions of (1.1), and
assume that [B] holds. Then there exist a number Ry, depending only upon the data such
that if u, = u, on 3B(R), R ¢ Ry, then uy = u, in B(R).

Proof: Writing the weak formulations for Uy and u, and subtracting, we obtain

f ([;(x.u1,‘7u1) - ;(x.uz.Vuz)]Ww + [b{x,u

Vu, ) - bi{x,u_,Vu )]¥}dx = 0
B(R) 1 2 2

1'

for all v € W 'P(B(R)).

Select ¢ = uy = u,, and observe that




k k
laj(x,u,Vu) = a“(x,u,,Vu)i(u, - u2)xk =

X
a (x,tu, + (1 t)uz,tvu1 + (1 t)Vuz)(u1 uy)

X,
J

Xk

]
[= )

{ug = uz)xjdt +

1
+{) akix,tuy + (1 = £)u,, eV, + (1 = £)0u )(u, = uy), (uy - uylde >

*x

1
> v (f 1tVu, + (1 - ) [P %) e % -
0 ) 1 2
! 1
-, 1Vu, 4 0 - e P et el
0

Treating similarly the lower order terms, we obtain after standard calculations

0l + v 0P et < vie) [ 110w

I+ 1% 1Py?ax .
B(R) B(R)

1
We majorize the integral on the right hand side by applying lemma 2.1 if p € (1,2] and
Lemma 2.2 if p > 2. In either case we obtain the existence of a constant Y depending
only upon the data, such that

[ Ul v e, 0P 2wl Zax < vR® [ (a0 + (%a 1P 39 %
B(R) R(B)

From this it follows that if YRP < 1,9 = u, - u, 2 0 in B(R).
We are now in the position to construct local approximations to u if [B] holds. Let

> + €
L and bE be the regularizations of a and b satisfying [A1] -[A4]e and consider the

boundary value problem
L d
-div ae(x,ue,Vue) + b(x,ue,Vue) = 0 in B(R)

(2.7)
u. =u on 3B(R), R € Ry -

€ €
In view of (A1] -[A4] » the remarks above, and Theorem 8.7 of [12) page 311, (2.7) has a
unique sgolution u, € W"p(B(R)) such that

(a) u_ € cZ(a(r)) N c*(B(RY)

<M= guplul, wve>o0.

(b) tu l
€ Qr

*,B(R)

~9-




An uniform bound for [ IVuelpdx in terms of M and [ IVuelpdx, is readily
B(R) B(R)
derived by standard theory (see [10,12)) and hence for a subnet (relabeled with

1+a

1
€ u_*w weakly in W ‘P(B(R)). After we ghow that u_ec .

we also have uc +* v
and Vuc + Yw uniformly on compacts of B(R), and hence passing to the limit in the
integral identities

£(R) (:e(x.ue,Vue)°Vw + b (x,u_,Vu_)e}dx = 0
vo e &""(s(nn, in view of the local uniqueness we obtain (1.3).

These remarks prove that it is not restrictive in order to prove our theorem, to work
on the smooth approximations {“e} introduced in [Ag]l. Let therefore (u c} be a net
satisfying [Aslr then considerations analogous to the ones above, imply that f{u e} are
uniformly locally H3lder continuous in 2', i.e. for every compact K C ', there exist
constants C, B & (0,1) depending only upon the data and dist(K,38') such that

lue(x) - ue(y)l <Clx - y) B; (x,y) e K, we> 0.
Lemma 2.4: Let B(R) C 8'. There exists a constant Y depending only upon the data such
that for every £ e ﬁ"ptnln))
B2

S
J ote+s a2 a2 ) {rew 1wt 2 (] 1w 1%)E
B(R) B(R) =1 i

RN L) T TR S TR MWl LT M
B(R)

Proof: For notational simplicity we will drop the subscript € and set
w= (e + IVuelz). Consider the integral

1= I wp/Z'v‘”Zgzdx ,
B(R)

and rewrite IVuI2 in the form

=10~




v

v

,
.

v
.

where X5 is any point in B(R). Integrating by parts

2
/2 2 2 2 /2
I=-~] (ux) - ulx )1 {wP“0u€® + pw “ u_ uw_ u _ E°+ 2wF"%u £E Jax <
B(R) 0 xi xl x,.x1 x.1 x1
} P

cvr® [ P2 v 17268+ v 2 gvgldax <

B(R) i 1

P2 2

<yl [ w2 env A n 1hE .

B{(R) i i

g2

+w2g? s n"wp/zlvslz}dx .

By taking n = (271&8)“1 we obtain
B2
] wlax=f PHwmPlare | P ax <
B(R) B(R) B(R)
B2 2
<1 vidasw® ) w?(lim 1hd
B(R) B(R) i i

+ wp/2|V£|2}dx +ef w2e2ax

B(R)
The lemma follows.
For s @R set Agp = {x €B(R)Iu(x) > s}y A_ . = {xeB(RIulx) < s} .

The proof of the following lemma can be found in (5].
Lemma 2.5: Let u € W"‘(B(R)) and let k,{ be real numbers such that £ > k., Then

1=

(2 - x)[meas A;,R] <y

_

—_— . |%uldx ,
[B(RI\A, _1 A _\A

meas k,R' “kK,R R

where Y is a constant depending only on the dimension N.

-11=-




3. Boundedness of the gradient

We prepare for the proof of Theorem 1 by establishing some integral inequalities
needed in what follows. The subscript € will be dropped and we set w = (€ + |vue|2).

Differentiating formally the approximating equation (1.4) with respect to x; gives

1 di a +2a a + d Yu) 0
(3.1) - v(au uo ‘u“x + ax ) ax b(x,u,%u
xj 173 i i i

in D*'(R). The equation holds in the sense of the integral identity

> +» +
(3.2) é {[au u o, *tau +a 12V - b(x,u,VuN’x }dx = 0

xjxij i i 1

for all ve ﬁ"q(ﬂ), q> 1.
In (3.2) select the test functions

o =u n(w)C2
i

where N(*) is a non-negative smooth function such that n'(w) » 0, and { is the
standard cutoff function in B(R) and B(R - OR). Adding over i = 1,2,...,N, identities

(3.2) with the indicated choice of ¢ and using [A1]e~[A4]e we have the estimates:

x 2 2
(1) [ a* u. . [u _n(wi +u, w&n'(v)c + "(""“xk]d"

B(R) “xj % %% 1 i
p-2 p2
>yl w? Qv gt s v [ w 2w R oosax -
B(R) i i B(R)
p-2

—a,f w21l ou u  lEnwEax .
B(R) i,3 i717)

From now on we will set

2 p-2

1R = w2 (] Ve 1nezax + [ w 2 (vl dreciax .
B(R) i B(R)

-12-




k k 2 2
(11) [ tatu, +alllu, L awIg" +u w n'(wig® v 2u nalw)gg lax <
BR) % % 0N Xy *x *y Xk

pt2
26-1 I o 2

€ SI(R) + Y4
B(R)

() + (1 + Y 2nt (w)lg2ax +

vy, [ W20+ fnngelax .
B(R)

(111) [ b(x,u,Tu) 3:— lu, n(w)gl1dx < SI(R) +
B(R) i i

2 jual
+ yi&"' ] w? (nw)+ '-m'(w)lczdx + 27, / w? n(w)giVeiax
B(R) B(R)

Collecting these estimates as parts of (3.2) with the choice ¢ = 70/4, we deduce the

existence of a constant Y depending only upon the data, such that

=2
(3.3) IR SY [ w 2 ) u ou o IntwglVglex +
S N |

B(R) i,3

B2
vy ) w? w41+ P nicdax +
B(R)

1
+ Y f w 2 nMw)Z|Vgldx + v f HP/ZH(V)C|7C|68 .
B(R) B(R)
We will make particular choices of n(°*). First select n(w) = w?, 8 2 0, and estimate
the terms in (3.3) as follows
2 2
(a) vy f w2 13 uou o In(wici¥glax < 6 [ w 2 9) (% 12) n(w) g2ax
B(R) i,3 17173 B(R) i i

sy [ WP 000 v e,

B(R)
g2
(b) ] w1+ /;)zn'(w)czdx = [ () dx 4+ [ (=) ax €
B(R) B(RIN{w>1] B(R)N[w<1}
pt2+2s
< 4s | w 2 t2ax + 4stRN .
B(R)

-13=
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T

[j faal pt2+2s pt2s

(e i -2nmuwuu<%f w 2 c%x+%f w? o vglax.
B(R) B(R) B(R)

These remarks in (3.3) yield

pt2t2s pt2s
(3.4) i eve+ ) w 2 Paxev [ w2 ogvgrfa e et

B(R) B(R)
for a new constant Y depending only upon the data and independent of s and R.
Next in (3.3) we will choose
aw) = (W2 - k)t = max{wP’? - x50} x> 1.
For simplicity we get w/2ay so that n(w) = (v ~ k)’, and estimate the parts of (3.3)

as follows

2 2
1 2 +
(@) ] w? 1} u L v =007 <2 w? %elv - 1)tV -
B(R) 1.3 AL 2 B(r)
1 + + 2 + 2 2
=1 Wv-rtliv-rTtilax< 28 V(v - k)| t%x +
P B(r) P BtR)
4 ;-1 +2_ 2
+=8f (v - k) |Vg|“ax ,
P B(R)
pt2
@ | w? e+ rwdiiaxcve f F v agdax ,
B(R) B(R)
et
) f  w®¥red mivciax<y [ P xiv > ogdax +
B(R) B(R)

2
sy we-x)t g2,
B(R)

Consequently dropping the term involving n(*) in I(R)
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w w |Vw|2x(v > k)czdx <25 f Vv ~ k)+lzczdx +
B(R) P aw

(3.5)

2
+v(8) [ v-x" lvclzdx+1f wp+‘x(v>k)czdx.
B(R) B(R)

Finally we observe that

p-2 p-2
[ w? w2tk icdax =20 v -t 1% %x,
B(R) B(R)

and hence for § = -15 we see that there exists a constant Y depending only on the data

and independent of R and k such that

2
(3.6) [ WwetZlaxcy (v -t vg%x +
B(R) B(R)

w1 PN gt k1.
B(R)

Inequalities (3.4) and (3.6) will be employed to prove the local boundedness of the

gradient.

Proposition 3,1: IVuEI e L(lloc(ﬂ), vq € [1,») unigormly in e,

Proof: By virtue of Lemma 2.4 applied with § = wzc we have

Et2+28 ptrzs
] w? axcyRRo+smram ey S w2 e vgdax .

B(R) B(R)

Combining this with (3.4), for a new constant Y we have

pr2+2s pt 2428
(3.7 I ow 2 tlax<vPoe o) w P fPaxe
B(R) B(R)
pt2s
sy(1+s%f  w? g% |v;|ﬁdx+y(1+s)zxnx".
B(R)
-19~
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"\'u_"f' .

;i Let now (Rs} be a decreasing sequence of numbers such that
; Ry = (2B R = my1 e 0B,
F and consider the concentric balls B(R,) and B(Rg,,).

If x + c!(x) is a standard cutoff function in B(R.) which equals one in B(Ra")

we have IV;slz < R‘;z(- + 2)8/8 and therefore (3.7) implies
pt2tis pt2s
(3.8) J v i acmPe et 0wy e Y,

B(R, ) B(R,)

where Y is independent of R; and s.

Iterating over s, starting from s = 0, the proposition follows.
Remark: Inequalities (3.9) imply that a local bound for f , jw)9ax over a compact
K* € 9' is obtained only in terms of the data and fvp/zgx for K' C K.
Proposition 3.2: quel e I.:oc(ﬂ), and for a conpactK: K' C Q' the quantity 'v“e'-,K' is
estimated only in terms of qulp’ g for a compact K containing K°'.
Proof: Consider inequalities (3.6) and estimate the last integral as follows

2-Nk

N{pt+1} o 2

“NK . 1= = +x
1{(11) v > nax < [g(n) w 2N ax]  [meas Lk,R] N

where x e (0, %] and A;:'R 2 {x e B(R)|v(x) > k}.

If 8" is a subdomain of fI', by virtue of proposition 3.1, the quantity

2=NK
U 'N(p*‘l )/2-m<dx] N
all

is bounded uniformly in € by a constant Y depending only upon the data and
dist(Q",30'). Therefore if B(R) C Q" from (3.6) we deduce
2 1= % +x

/ v -0 12ax ¢ Yo ™2 [ (v - 1) ax + y[meas a7 | .
B(R-0OR) B(R) ’

-16=~
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These inequalities are valid for all B(R) C " and all o€ (0,1). The proposition now
followas from Lemma (5.4) of [12] page 76.
We conclude this section by giving a simple proof of the boundedness of the gradient

for equations with restricted structure

>
(3.9) -div a_ (Vu ) = 0, ve 2 0
€ €
where
2
k 2, 2 2
a. Ektj > Yole + 1Vu 171 ° 1E|
X
b}
2
k 2, 2
l‘cu | € Y le + IVucl 1 v p>1.
"3

Equations with this structure include div(quIszvu) =0, p>1,

Even though the gradient estimate is a particular case of Propositions 3.1 and 3.2,
the simple constant-dependence typical of (3.9) will be needed in what follows. 1In
particular in Proposition 3.1 use was made (via Lemma 2.4) of the HSlder continuity of
u, whereas for (3.9) is our goal to find a bound for IVuI.'K independent of the local
properties of u.

Proposition 3.3: Let u, be a local weak solution of (3.9) in . For every ball

B(R) C ! and every 0 < § < 1 we have,

2, ,p/2 -N 2,p/2
e + 1Yo 110 pmry € Y(OR l{m e+ % %" ax, ved0,

where Y depends upon the data and § only and is independent of R.

Proof: Taking the x; derivative of (3.9) in the weak sense we have (the subscript € {s

dropped)

k o1
(3.10) J a. u ¢ ax=0 vy € W 'P(B(R)) .
B(R) "xj *1%5 *

vl

Set ¢ = u, W cz, a> 0, where w = (€ + IVuelz) and § is the standard cutoff function
i
in B(R) and B(R - OR). Standard calculation yield, for Y independent of a,

pta 2 pto
fo vt Paxcy ) w? o wiPax.
B(R) B(R)

-17-

s KPS UL ST SOUR WA »‘-i P ——— ‘.-L_L__ S - P P P Ly




Setting
vs 'P/C’ o=+ 2
4
the above can be rewritten as
;o Pax < v [ v Pvedax .
B(R) B(R)
S8ince G 1is an arbitrary positive number, 6 1is an arbitrary number larger than 1. The
Moser iteration technique [19] now gives

' <y(or™ [ vax

2
VN, B(R-8R) B

for any 0 < § < 1. The Proposition is proved.
This proof applied to div(|Vu|? 27\1) = () sgeems more direct than the ones in

(7,13,23).

-18-




4. HOlder continuity of the gradient

We start by proving that local weak solutions of

+>
-div ae(Vu) = 0
are c1+°(ﬂ) Her 2 atisfy (A ]e—[A ]e and the equati for the component of
loc . e a8 y (A, 2 eq on e pO! ux1
Vu is viewed in the weak sense (3.10). For k € R in (3.10) set

=z (a -~ k)*c2
i
to obtain

r2 2 2 2
(4.1) I w? v, -wfl @ ey w? g -t it
B(R) 4 B(R) 1

for Y depending only upon the data.
For the case 1 < p < 2 another inequality will be needed.
In (3.10) set

v = ~ltlu, | + T2 -x7h  xenr,
n xi xi
where n is a small positive number which will be let + 0.

Let us get

- P2 - 2
b= Uu | +n) “"1’ v quilp'“x

i 3

and notice that

(B = Dl [+ MF 20y, <kl < gh—v, < Uu 1+ WP 2y <cn
‘ i

Xy

k'R(n) = {xe B(R)Nn < k} and AR

Setting A {x € B(R)|y < k} from (3.10) with the

indicated choice of test function we have

B2
(4.2) Yy f w? 1Vu |2(|u | + n)p'zczax <
- X X
Ak’R(n) i 1
=2
<2, | w? e Fb, = ®) 7l 9glax .
B(R) i

Notice that
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2 P2 _4_ p/2,2
1o, 1%, |+ ) 5 1Pu |+ M

i i p
and that if n <€

2 p/2
v e hs et v e

Therefore from (4.2) it follows that

2
{ R TR Tl o R R B CRER k| T

A R(") i B(R)
’

Letting N + 0 and setting
2
v=lu, |P/2sign
x; “xi
the above gives

B2 —P __2
(4.3) [ w2 loe-x2"M) ] ey jw-n13vl .

B(R) B(R)
Inequalities (4.3) hold for every ball B(R) C Q' and every k € .
Proposition 4.1: Let x; € ' and let R be 80 small that B(2R) C Q'. Set

A= max sup |u, | .
1<i<N B(R) 1

There exists a number <g depending upon the data but independent of ¢€,R,A,

for some 1< i< N

meas(x € B(ZR)lu, (x) < A} < coR" .

then

uxi(x) > % . Vx € B(R) .

Analogously if

meas{x € B(ZR)I\:x (x) > =A} € COR" ’
i

then

uxl(x) < -% ’ ¥x € B(R) .

such that if




2

Proof: Either & » A° or € ¢ 22, In the first case, recalling that
w= (E + |Vuc|2) <e + mz on B(p), W < 2R, from inequalities (4.1) written for the
ball B(p) CR' we have
=22 -2 2
(4.4) J Wea, - %7 ¢ax < Y/ e, -7 Vg %ax,
B(p) i B(p) i
for every k € A and for a new constant Y depending only upon the data.

In the second case we consider inequalities (4.1) for p » 2 written for (u"i - k)",

k € A on the balls B{(p), p € 2R, and estimate the left hand side from below as follows

P2
foow? e ke, <xgdax> [ qu 1290 1%, < xtax
B(p) i 1 B(p) 1 1 1
- 5-2[ Via, |P/2l2x(ux < x)eax .
p° BLP) i 1 .
Setting
v= Inxilp/2 sign uxi, above gives
2 2
Jow? e ke, cotfaordf 0 vy w7l g
B(p) i i p- B(p)

for every h < hy = Xp/ 2. Therefore, recalling the definition of A, if x + L(x) is the

standard cutoff function in B(p), B(p - op) O € (0,1), we have from (4.1) and p > 2

-

-2 2, -2
(4.5) f I¥9(v = n)"| dx € Yho(cp) [meas L
B(p-0p) P

1.

for a new constant Y depending only upon the data and independent of €,p,0,h. We have
also set

Anp = {x eBo)v(x) < b} .
For the case 1 < p < 2, from (4.3) we deduce V¥p € 2R

2

2 Ny
tw s P20 o(e - k2P g2 <y [ g, PR - kT Avel ax
B(o) B(P) i i
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Ap/2 and

go that if we choose k € 2P ! and denote with h any number smaller than
hy = Ap/z. we will have (4.5) for a new constant Y independent of ¢€,p,0,h. Hence (4.5)
holds both for the case p » 2 and 1 < p < 2.

We will prove the proposition for the case € < Xz, i.e. in the case (4.5) (valid
¥Vp > 1) hold. Then it will be clear how to achieve the proof in the (simpler) case when
(4.4) are verified.

Inequalities (4.5) are verified ¥o € (0,1), ¥p € 2R and every choice of

h ¢ ho - Ap/z. FPor n » 0 integer, consider the balls B(pn), B(Bn) where

R
+ ——
Dn-R n)

and construct smooth cutoff functions x + cn(x) such that I;n(x) 1 on
- -1 n+1.-1

Blo )1 supp T Blp ) IVC | € (p =p ) <27 'R .

We will use (4.5) over the pair of balls B( °n+1) and B( pn) for the sequence of

decreasing levels

H 1 -
hy = hy ~ 2 (1 -—) H= sup (v=-hy) .
" 4 2" B(2R)
Applying Lemma 2.5 to the function u = -v for the levels & = -h,p9e k= -h, over

s(pn+1) we have

N
ey [meas ) ]V <y [ ‘2':\’_ 7 I%lax .
2 n+1’ nt1 meas |B(p Ah - -
n+1 P A, \Ah
n' n+l

By virtue of the assumption of the proposition

c
- N - N 0
meas[B(p_, )\ ] > x.0 - meas >k (R -— 2R > SR
n+1 Ahn'pnﬂ "Pn+1 Aho,zlt b Ky SR
K
if we choose Sg < ;E:T.

In view of this, setting

= meas AL
“n hn' pn '
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the above implies (for a new constant Y depending only upon the data)

N=-1
_— n
1 - 2 1
w N ocy2 g ivvlax < X2 [ [Vew=h "1 2ax V20 V2
n+1 H 7 - H B( ) n n
A, AL Pat+1
n’°n+1 n+1Pnet
From (4.5)
2n+2
[ 19ty = h )7 j2ax < B2y,
Blp_, ) n R n
n+1
so that
N-1
-_ 2n h
N 2 0
(4.6) LT <1——2 G v, -
R
We observe that if H < % ho, then
sup (v-~-h ) = sup (qu Ip/zsign L AP/Z) < % xp/z R
B(2R) B(2R) i i
~2/py , A
i.e. uxi(x) > 2 A2 i Vx € B(2R).
Therefore we may assume H ? % hq. Dividing both the sides of (4.6) by RN. and setting
lllll
Yn T TN
R
we have in dimensionless form
a Mt u’1 331
vn+1 < Yb vn ’ b= 2 ’

for a new Y dependent only upon the data.
From these recursion inequalities it follows from Lemma 4.7 of [12] page 66, that
there exists a number c, depending only on Y and b such that if vo < Cqe then
vn + 0 as n + =, Consequently if
meas{x e B(2R)|uxi(x) < A} € coRN R

then
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1
meas{x € B(R)luxi(x) < 22/" Al =0  i.e.

(x) > Al max sup [u, (x){, ¥x @ B(R) .
Ux a8 %
i 1<j<N B(2R) 3

Suppose now that the assumptions of Proposition 5.1 fail. Then for all i = 1,2,...,N we

have
N

(4.7) meas{x e B(ZR)qui(x) > A} < (1 - o) KR and
N

(4.8) meas{x € B(2R) Ju, (x) < =A< (1 - coIR R .

Set

2X = u(2R) = max sup lu, (x)] ,
16i<N B(2R) 1
and observe that (4.7)-(4.8) are still verified if we replace A with a larger number. We
will use (4.7)-({4.8) with ) replaced by (1 - 1—')u(2n), for s eNn.
Proposition 4.2: Let (4.7)-(4.8) hold v 1 < 12< N. There exists a number 60 e (0,1)
depending only upon the data and independent of A,€,R such that

B(R/2) = max sup Ju_ ) € & u(2R) =8 wmax sup |u, | .
1<iCN B(R/2) X o 0 1<i<N B(2R) Yy

Proof: Suppose (4.7) holds and consider inequalities (4.4), written for
(ux1 - - 1—.)14(2!1))*, s € N, over balls B(p), p € 2R. Since the integrals are extended

2
over the set where “"1 is larger than (1 -~ ‘—.) u(2R), we have on this set
2

2 =2 =2 =2
3PP v ? s e v ? o cam ? ouem 2.

Consequently (4.4) can be rewritten (for all p > 1)

1 + 2 -2 1 +2
(4.9) J Vo, = O =)' | &€ yiop) ™ [ (u = (1 - ax,

B(p~0p) i 2 B(p) i 2

where we have set |} = P(2R) for notational simplicity.
Lemma 4.1: For every 90 e (0,1), there exists 8; € W such that

meas({x e B(R)lu,‘i(x) > (1 ~ +)u(2n)) < eon“ .
2
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Proof of lemma 4.1: We majorize (uxi(x) - (1 - l;)u) by u/2® and write (4.9) for
2

+

P = 2R and O = 1 to obtain

2
(4.10)

for a new constant Y.

L it

Then we have

2-(s+1)

<

0|4

2 (f
B

0

Squaring both the sides, using (4.10) and dividing by (2-('+')u)2 gives

+
Y [meas A
r

2 2
1 - N
/] WV -1 - -z—s)ufl dx € YR 2(:—;) K R

B(R) *i

Apply Lemma 2.5 to the function u, (*) for the levels

i

U, k =y - 2"u and notice that by virtue of (4.7)

+ N
meal{B(R)\Ak'R} > cgR .

1< 1By IVu, lax <

LR e, \a* 1
AR PR

-, + 2 11/2 + +
= |V(uxi - (1= 2% 7| “ax] " “( meas A r Mk

2 N +
[ncas A:- 1 . R] < YR [nsas ‘k.R\A;,R] .
s+1 '
2

We add over s = 1,2,...,:0 - 1 to obtain

where Y depends only upon the data.

large that

Lemma 4.2: Let inequalities (4.9) hold ¥p < 2R,

for some 8 en

then

+ X N, 2

{8y - 2)[meas A ] <& xrH ¢,

0 "
U= + ¥R co

2 0

_) < 92.
co(so - 2) 0

“%p N
meas{x € B(R)qul(x) >u=~2 u} < OOR .

%0

meas{x € B(R/Z)lux (x) u=~=2 "u+ 1 H} = 0
i 2

To prove the lemma we have only to choose 8,

There exist a number

a0

such that if

e L e




-~~~ ——

-‘ where

-8
K = sup (ux (x) - (u-2 ou))’ .
B(2R) i

Proof of lemma 4.2: The lemma is proved essentially in the same way as Proposition S5.1.
We leave to the reader the few wmodificationa needed.

Proof of Proposition 4.2 (concluded): PFix 60 as in Lemma 4.2 and choose 8

consequently by the technigue indicated in Lemma 4.1. Lemma 4.2 gives then

~(8y+1)
sup u 0 <u-tuetncu-yedoyasuwe -2 0 ).
B(R/2) "1 20 2 0 2o

Starting now from (4.8) by the same arguments we arrive at
inf u_ (x) > <8 u .
B(R/2) M 0
Since (4.7)-(4.8) both hold ¥ 1 < i < N the conclusion follows.
Proposition 4.3: The solution of <~div : e(v“e) =0 are c;::(ﬂ), uniformly in ¢, and
for every ball B(R) C 8 there exist constants Y and ne (0,1) depending only upon the

data and dist(B(R),32) such that

n
osc u__ < y(8), 1i=1,2,,..,N
Bp) X1 R

for every ball B(p) concentric with B(R), p < R.
Proof: Suppose the assumptions of Proposition 4.1 are verified. Then for some i either
1
uxi(x) >3 u(2R) Vx € B(R)

or

uy, (%) < = § WzR) vx € B(R) .

In either case

P2 22 22 2
(l) p-2 2 2 2
3 u(2R) <w € (N +1) u(2R) s, WVx € B(R) .

Therefore writing (4.4) over balls Bi(p), p < R for all { = V,2,...,8 and all levels

~26~




k we have (Vp > 1)

£,2 -2 2
(4.11) J Wia, - k)7 ax € y(op) ° [ (u. - k)* ax,

B(p-0p) i B(R) i
for a new constant Y depending upon the data and independent of €,p,k. These
inequalities imply, with the aid of the results of [12] page 81-90 that there exist a
constant 61 € (0,1) depending only upon the data, such that for all {i = 1,2,...,N

osc u (x) € 61 osc u_ .
B(R/2) i B( 2R) i

If we set ¥V p ¢ R
w(p) = max oscu_ ,
1K< B(p) i
the above implies
(4.12) w(rR/2) € 51w(n) .

If the assumptions of Proposition 4.1 fail then for all 4 = 1,2,...,N we have that

both (4.7)-(4.8) are verified. Proposition 4.2 then gives the existence of 60 depending
only on the data such that
(4.13) M(R/2) € 6 u(2m) .
Fix some R; such that B(Ro) C ' and consider the sequence of radii R, = Ro/zzn,
n=20,%... and balls B(R;) all concentric and shrinking. The proof shows that if for
some ng, tggzhypothesis of Propogition 4.1 are verified, then for all n > n;, we can
estimate w 2 from above and below in terms of ll(Rn ) and hence in B(R,) ¥n > n, the
equation behaves like a non-degenerate elliptic equatign. From (4.11) then it follows that
(4.12) holds ¥n > ny. Consequently we can assert that there exist n, € ® such that
{4.13) holds ¥ 0 € n < n;, and (4.12) holds for all n > ny, n €M

The proof of Proposition 4.3 now follows from a standard modification of Lemma 4.8 of

{12] page 66-67.
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5. Proof of Theorem 2

Let ug be solution of (1.4) in Q for € > 0 arbitrary but fixed. By the remarks
of Section 2, u, is H3lder continuous in R' with constants Y and § depending upon
the data, dist(0',3Q) but independent of €.

Let us fix Q" a subdomain of § compactly contained in Q'. By virtue of the
results of Section 3

IVutl.bn_ <y
for Y depending on dist(R",31') and the data. Consequently the u, are equi-Lipschitz
continuous in K",

@ around any point x, € 1", uniformly in €. Let

We want to prove that u, e c“
xg € 8" be fixed, choose R o small that B(R) = {jx - x,| < R} C 8", and for
w e L,(B(R)), set

1
w (x } = _——-—! u(x)d.x .
RO meas B(R) B(R)

I2 €> 0 1ig fixed we will write u instead of u. Consider the problenm
L 4
-div a‘(xo.un(xo).VV) = 0 in B(R)
(5.1)
v u on 3B(R)

where R is s0 small for the Lemma of local uniqueness to hold.

lewma 5.1: Problem (5.1) has a unique solution v e c2(B(r)) N cs(B(R)). Moreover
(1) inf u <€ v(x) < sup u vx € B(R)

3B(R) IB(R)
(11) osc v € YR

B(R)
(1i1) ¥8 € (0,1), there exist a constant Y(8) such that

P A P
IS retr) YO RS 1Wifax,

R B(R)

the constants Y,8,Y(8) do not depend upon €.
Proof: The statement of existence is classical [10,12].
To prove (i) consider (5.1) written in the weak form

a . - AR
(5.2) é(n) a (xg,u(x)), W) ePvax = 0, vee W PR,
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. o
and select v = (v - sup u)+ e W"p(n(n)). Using (2.1) we deduce

3B(R)
P2 2
2. 2 +
Yof e + [Yv|9) V(v = sup u) | dx € 0 .
B(R) IB(R)

The statement about the "inf" is proved analogously. As a conseguence
ogc v= max v~ minve¢ sup u- inf u<€ oscu.

B(R) B(R) B(R) IB(R) 9B(R) B(R)

Since u. are equi-Lipschiteg in 2%, (ii) follows. Statement (iii) is a consequence of

Proposition 3.3.

Let us write (1.4) in the weak fora for test functions ¢ € a"p(B(R)) and subtract
(5.2) from it. Dropping the subscript € we obtain
(5.3) );(R) (a(x,u,%) - :(xo.un(xo),Vv))Wvdx +

s1,p
+[  bix,u,Vulpax = 0; wo e w 'P(B(R)).
B(R)

.1'p
Choosing ¢ = u~-v €W ""(B(R)) we have

(a(x,u,%0) - alx,,u(x,),9v)]1-Vy =

g: ;(tx + (1 - thxp,tu + (1 - t)uR(xo),tVu + (1 - t)Vv)dteVy =

-{, at (tx + (1 - t)xy,tu + (1 - t)un(xo).tv\l + (1 - ¢)¥v)at(u - v)xk(u - V)"j +
1

+ {, af(tx + (1 = thxg,tu + (1 = thu (x),t%u + (1 = £)Vv)dtla - uglxy))(u - Vi

1
+ {) .)’:1(" + (1 = t)xg,tu + (1 = thux ), tVu + (1 - £)Vv)ae(x - xo)i(u - v)xk >

1 P2
>¥y [ €+ 1tVu s (1 - &Wl3 2 v - w2t -
0
jad §

2

)
vy [ e - 01 2 fa - ugeg)l + Ix - x 11190 - v lae .
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Therefore (5.3) implies for all p > 1

=2
5.0 [ te+ 192 + 193 2 v - vt <
B(R) )
et
<y tes vt e iwi% % G - uglegdl + Ix = %11 Ww - v)lax +
B(R)
+vf Ib(x,u,%)}lu - v|dx .
B(R)

Applying Lemma 5.1, and denoting with X an arbitrary point of JB(R) we have ¥x € B(R)
lutx) = v(x)) € Ju(x) = u(X)]| + |v(x) - v(X)] € osc u+ oscv € R .
B(R) B(R)
Moreover, for the lower order terms recalling (A ‘]s and Theorem 1
b{x,u,%u)|u(x) - v(x)|] € R,

and since u, are equi~Lipschitz in 0"

|u(x) - uplxg)l € R .
Finally using Cauchy inequality ab < “2 + e"bz on the first integral on the right hand
side of (5.4) we deduce that for a new constant Y depending only upon the data and

independent of R and ¢

2

(5.5) [ e+ a2+ 1wiA 2

B(R)

|V(u - v)lzdx < m'" +

+yr [ te+ W2 e (W1 2 .
B(R)

Lemma 5.2: (i) [ [wiP<y®,
B(R)
(11) wvé e (0,1), 3TY(8) independent of €, such that
14
'vv.",B(R-CR) < y(8) .

Proof: A straightforward calculation from (5.5) gives

] 1wPax <™ s yre 1 [ wiPax s m [ W|Pax
B(R) B(R) B(R)

~30=




1

for a new Y independent of R and €&. Since R can be chosen so that YR < P by

virtue of Theorem 1

| iwiPax < &V .
B(R)

Statement (ii) follows from (i) and (iii) of Lemma S.1.

Lemma 5.3: For every & @ (0,1), there exist a constant Y(§) independent of R and

such that

(5.6) f [9(u - v)lzdx < Y(G)RNM, ¥V 0 <Cp<R=08R.
B(p)

where

2
o =min{1; <} .
14

Proof: By Lemma 5.2, (5.5) implies V¥p > 1

=2
(5.7) | e+ va? 1wl 2 v - v %ax <
B(R)
for Y 4independent of R and e.
If p? 2 we have
2 2
2 P NP
] Wa-wlfax< (f 1V - v)IPax )P R <
B(R) B(R)
2 ) 2;—2- 2 2 (ne1) 2
<2(f e+ a2 1wy 2 v - PPN P o< P,
N
B(R)
1If 1< p<c<2, for § & (0,1) fixed we have from (5.5)
_ 2 P P N+1
!{(R-smlvm VI <Y+ WVl ey WS e IR
Therefore by (ii) of lemma 5.2, inequality (5.6) follows.
We fix & = % so that ¥ 0 < p < %
(5.8) [ 1% - wilax < vV

B(p)

-3~

—— . L

€

WPy




Proof of Theorem 2 (concluded): We have

(5.9) / IVu - (Vu)p(xo)lzdx <f (Vu - (Vv)p(xo)lzdx <
B(p) B(p)
2 2
<J [Vu - Vv|“ax + [ 19v = () (xy)] “ax .
B(P) B(p)

By virtue of Proposition 4.3, x * Vv(x) is HSlder continuous in B(R/4) with constants

Y and n € (0,1) depending only upon the data and Vvl The latter quantity is

=,B(R/2)°
estimated by (ii) of Lemma 5.2, and therefore we conclude that there exist constants Y,n
depending only upon the data such that
2 N/p x R
(5.10) [ W= (x)‘ax<vw(E) ;+ o0c<co<T.
B(p) P 0 R 4

Using (5.8) and these remarks in (5.9) we have
ral
[ 1Vu - (w (x| %ax < v[pN(&)  + &Y
B(p) p 0 R

for all 0 <p <X, Let 0,0 € (0,1) be defined by

4
- g - —
(5.11) 9 e a Nt n+o '’
and in (5.10) chooge p = % R(‘+°)- This gives
T vu - (V) (xg) 1 Pax < Y

B(p)

for a constant Y independent of P and E€.
From a result of Campanato [3) {see also [4]) it follows that x + Vuc is
locally HGlder continuous in " with exponent &, uniformly in €.
Remark: The relations in (5.11) link the estimated H3lder exponent of x + Vu, with n,

the HSlder exponent of 9Yv in (S.1) "with constant coefficients”, with p (via Lemma

5.3), and with the dimension N.
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